Volume List  / Volume 2 (4)

Article

SEARCH STRATEGY FOR NESTED LOGIT TREE STRUCTURE: A CASE STUDY OF RURAL FEEDER SERVICE TO BUS STOP

DOI: 10.7708/ijtte.2012.2(4).04


2 / 4 / 333-346 Pages

Author(s)

Sudhanshu Sekhar Das - RSR Rungta College of Engineering and Technology, Bhilai, India -

Santanu Ghosh - Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India -

Bhargab Maitra - Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India -

Manfred Boltze - Transport Planning and Trac Engineering, Darmstadt University of Technology, Petersenstr. 30, 64287 Darmstadt, Germany -


Abstract

Several approaches have been suggested by researchers for identifying the best feasible tree structure for Nested Logit (NL) model. This paper demonstrates an experience of applying those approaches while identifying the best feasible tree structure for NL model with reference to a case study of feeder service to bus stop in rural India. Heteroscedastic Extreme Value (HEV) model, fully degenerated tree structure NL (DGNL) model and several nested logit models based on natural partition principle were developed and analyzed for identifying the most optimal NL model. The results presented in the paper are case specific but the experiences documented could be useful for selecting the optimal tree structure for NL model in other cases.


Download Article

Number of downloads: 404


Acknowledgements:

The work presented in this paper is carried out with support from Deutscher Akademischer Austausch Dienst (DAAD) and Alexander von Humboldt Stiftung. Authors express their sincere thanks to these institutions for their support towards international exchange and research.


References:

Ben-Akiva, M.; Lerman, S.R. 1985. Discrete Choice Analysis: Theory and Applications to Travel Demand. MIT Press, Cambridge.

 

Bhat, C.R. 1995. A heteroscedastic extreme value model of intercity travel mode choice, Transportation Research Part B. DOI: hžttp://dx.doi.org/10.1016/0191-2615(95)00015-6, 29(6): 471-483.

 

Bliemer, M.C.J.; Rose, J.M.; Hensher, D.A. 2009. E’fficient stated choice experiments for estimating nested logit models, Transportation Research Part B. DOI: httžp://dx.doi.org/10.1016/j.trb.2008.05.008, 43(1): 19-35.

 

Borsch-Supan, A. 1990. On the Compatibility of Nested Logit Models with Utility Maximization, Journal of Econometrics. DOI: http://dx.doi.org/10.1016/0304-4076(90)90126-E, 43(3): 373-388.

 

Brownstone, D.; Small, K.A. 1989. Effi’cient Estimation of Nested Logit Model, Journal of Business and Economic Statistics. DOI: httžp://dx.doi.org/10.1080/07350015.1989.10509714, 7(1): 67-74.

 

Carson, R.; Louviere, J.J.; Anderson, D.A.; Arabie, P.; Bunch, D.S.; Hensher, D.A.; Johnson, R.M.; Kuhfeld, W.F.; Steinberg, D.; Swait, J.; Timmemans, H.; Wiley, J.B. 1994. Experimental analysis of choice, Marketing Letters. DOI: httžp://dx.doi.org/10.1007/BF00999210, 5(4): 351-368.

 

Das, S.S.; Maitra, B.; Boltze, M. 2009. Valuing Travel Attributes of Rural Feeder Service to Bus Stop: A Comparison of Different Logit Model Specifications, Journal of Transportation Engineering, ASCE. DOI: hžttp://dx.doi.org/10.1061/(ASCE)0733-947X(2009)135:6(330), 135(6): 330-337.

 

Dissanayake, D.; Morikawa, T. 2010. Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference‡ Nested Logit model: case study in Bangkok Metropolitan Region. Journal of Transport Geography. DOI: hžttp://dx.doi.org/10.1016/j.jtrangeo.2009.07.003, 18(3): 402-410.

 

Green, P.E.; Krieger, A.M.; Wind, Y.J. 2001. Thirty Years of Conjoint Analysis: Reflections and Prospects, Interfaces. DOI: http://dx.doi.org/10.1287/inte.31.3s.56.9676, 31(3): 56-73.

 

Greene, W. 2000. Econometric Analysis. 4th ed. Prentice Hall, Upper Saddle River.

 

Hensher, D.A. 1991. Effi’cient Estimation of Hierarchical Logit Mode Choice Model. In Proceedings of the Japanese Society of civil Engineering. 17-28.

 

Hensher, D.A.; Greene, W.H. 2002. Specification and Estimation of the Nested Logit model Alternative Normalization, Transportation Research Part B. DOI: hžttp://dx.doi.org/10.1016/S0191-2615(00)00035-7, 36(1): 1-17.

 

Hensher, D.A. 1994. Stated Preference Analysis of Travel Choices: The State of Practice, Transportation. DOI: hžttp://dx.doi.org/10.1007/BF01098788, 21(2): 107-133.

 

Hensher, D.A. 1998. HEV Choice Models as a Search Engine for Specification of Nested Logit Tree Structure, Marketing Letter. DOI: http://dx.doi.org/10.1023/A:1008151702729, 10(4): 333-343.

 

Hensher, D.A.; Rose, J.M.; Greene, W.H. 2005. Applied Choice Analysis a Primer. Cambridge University Press.

 

Koppelman, F.S.; Wen, C. 1998. Alternative Nested Logit Models: Structure, Properties and Estimation, Transportation Research Part B. DOI: http://dx.doi.org/10.1016/S0191-2615(98)00003-4, 32(5): 289-298.

 

Lee, B.H.Y.; Waddell, P. 2010. Residential mobility and location choice: a nested logit model with sampling of alternatives, Transportation. DOI: http://dx.doi.org/10.1007/s11116-010-9270-4, 37(4):‡587-601.

 

Louviere, J.J.; Hensher, D.A.; Swait, D.J. 2000. Stated Choice Methods. Analysis and Applications. Cambridge University Press.

 

Manheim, M.L. 1973. Practical Implications of Some Fundamental Properties of Travel Demand Models, Highway Research Record, 422: 21-38.

 

McFadden, D. 1974. Conditional Logit Analysis of Qualitative Choice Behavior, In P. Zarembka (ed.), Frontiers in econometrics, New York: Academic Press. 105-142.

 

McFadden, D. 1978. Modelling the Choice of Residential Location, Transportation Research Record. 672: 72-77.

 

NLOGIT 4.0. 2007. Reference Guide. Econometrics Software Inc.

 

Siriwardena, S.; Hunt, G.; Teisl, M.F.; Noblet, C.L. 2012. Effective environmental marketing of green cars: A‡ nestedlogit ‡approach, Transportation Research Part D. DOI: httžp://dx.doi.org/10.1016/j.trd.2011.11.004, 17(3): 237-242.

 

Williams, H.C.W.L.; Senior, M.L. 1977. Model Based Transport Policy Assessment II: Removing Fundamental Inconsistencies from the Models, Traffic Engineering and Control, 18(10): 464-469.